РЕКОНСТРУКЦИЯ ДИНАМИКИ КАЛЬДЕРООБРАЗУЮЩЕГО ИЗВЕРЖЕНИЯ ВУЛКАНА ПРА-КАРЫМСКИЙ (7800¹⁴С ЛЕТ НАЗАД)

Кувикас О.В.

Камчатский Государственный Университет им. В. Беринга, г.Петропавловск-Камчатский, kuvikas@mail.ru

Вопросы реконструкции динамики вулканических процессов издавна привлекали к себе пристальное внимание геологов вследствие существенной роли вулканизма в геологической истории Земли и в формировании вещественного состава коры.

На территории Камчатки за последние 10000 лет произошло несколько кальдерообразующих извержений, одно из самых сильных, извержение вулкана Пра-Карымский 7800 С¹⁴ лет назад [2].

Карымский вулканический центр является элементарным звеном Восточного вулканического пояса Камчатки и располагается у её восточного побережья к северу от Шипунско-Налычевской шовной зоны. Современная постройка вулкана $(54^004^\circ\text{ с.ш.}, 159^036^\circ\text{ в.д.})$ находится в центре голоценовой кальдеры, которая образовалась в результате извержения пемзового пирокластического материала $(13\text{-}16\text{ км}^3)$ и последующего обрушения постройки [2].

- В результате проведённого нами детального стратиграфического, гранулометрического анализа обнажения $(54^001^{\circ}25.0^{\circ}$ с.ш., $159^028^{\circ}47.3^{\circ}$ в.д.) были выделены 3 фазы развития кальдерообразующего извержения (рисунок).
- 1. Извержение началось с выбросов ювенильной пемзовой тефры. Затем последовало образование серии пирокластических потоков, главные ветви которых пошли по рекам Крестьянская и Карымская. Пирокластические потоки покрыли территорию, общую площадь которую оценивают в 150 км² и имели длину 10-15 км. Сопутствующие пирокластическим потокам «палящие тучи» отрывались от них, распространялись на расстояние более 30 км и достигали берега Тихого океана. Основная ось пеплопада была ориентирована в восточно-юго-восточном направлении [2].
- 2.Момент обрушения кальдеры. Содержание резургентного материала резко увеличивается (до 10%), увеличивается и размер чужеродных обломков (до 15 см). Преобладает грубо, крупнозернистый пепел, встречаются единичные мелкие вулканические бомбы и пемзовые лапилли. Заметна полосчатая текстура пемз, образованная за счёт чередования кислых и более основных магм.
- 3.Объём отложений пирокластических потоков составил 4,5-6 км³, суммарный объём тефры 8-10 км³. Главный сектор рассеяния пепла располагался к востоку от кальдеры и значительная его часть выпала над акваторией океана. На Командорских островах, в 450 км от источника выброса, пепел этого извержения имеет мощность 3 см [2].

Интересно отметить, что по данным валового химического анализа, наряду с кислыми пемзами, встречаются породы более основного состава (таблица 1, образцы 4,8). Это является свидетельством внедрения более основной магмы в магматический очаг вулкана, наличие пород промежуточного состава, в свою очередь является отражением снижения кислой и более основной магм. Об этом же свидетельствуют и полосчатые текстуры пемзовых лапилли, образованные за счёт чередования разных по химическому составу полос.

Таким образом, важной особенностью рассмотренного кальдерообразующего извержения является пространственная ассоциация кислых и более основных пород,

Таблица 1. **Химический состав пемзовых лапилли кальдерообразующего извержения** вулкана Пра-Карымский

- J														
№	P	SiO ₂ %	TiO ₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	FeO %	MnO %	CaO %	MgO %	Na ₂ O %	K ₂ O %	P ₂ O ₅ %	nnn	Sum
1	0-20 см	69,2	0,502	12,5	1,52	1,6	0,091	2,39	0,711	3	1,39	0,164	6,37	99,438
2	20-40 см	69,3	0,505	12,6	1,21	2,2	0,082	2,6	0,574	3,21	1,49	0,136	5,67	99,577
3	40-60 см	69,9	0,479	13,1	1,26	2,03	0,086	2,48	0,476	3,52	1,7	0,101	4,83	99,962
4	60-80 см	62,5	0,712	15,4	3,12	3,29	0,131	5,58	2,14	3,33	1,02	0,146	2,57	99,939
5	80-100 см	70,5	0,495	13,4	1,33	1,98	0,111	2,67	0,549	3,47	1,72	0,101	3,53	99,856
6	100- 120 см	71,9	0,509	12,5	0,997	2,1	0,099	2,41	0,374	3,18	1,93	0,107	3,84	99,946

7	135 см	71,3	0,483	13,8	1,08	1,99	0,087	2,61	0,608	3,72	1,7	0,104	2,47	99,952
8	120- 140 см	62,8	0,711	15,2	3,2	3,16	0,135	5,51	2,05	3,26	1,04	0,147	2,65	99,863
9	140- 160 см	67,8	0,551	13,9	2,58	1,74	0,108	3,35	1,04	3,53	1,5	0,123	3,7	99,922
10	160- 180 см	69,1	0,499	13,9	0,789	2,46	0,064	2,83	0,736	3,66	1,59	0,114	4,16	99,902
11	180- 200 см	67,8	0,534	14,3	1,42	2,67	0,133	3,15	0,939	3,68	1,42	0,12	3,85	99,996
12	200- 220 см	69,4	0,505	13,8	2,27	1,39	0,097	2,64	0,786	3,74	1,53	0,109	3,54	99,807
13	220- 240 см	69,1	0,489	13,8	1,5	2,25	0,099	2,64	0,715	3,74	1,54	0,112	3,87	99,855
14	240- 260 см	70,2	0,733	11,9	2,7	2,46	0,103	2,82	0,321	1,99	1,72	0,171	4,22	99,338

Примечание: Р расстояние опробованных горизонтов от подошвы до кровли обнажения. Анализ проводился в Институте вулканологии и сейсмологии ДВО РАН, на приборе: ренгенофлюоресцентный спектрометр «S4 PIONEER» . Операторы Н.И. Чеброва, Н.А. Соловьёва

свидетельствующая о внедрении более основной магмы в магматический очаг кислой магмы и их смешении перед извержением или в процессе извержения.

Автор выражает искреннюю благодарность научному руководителю Г.П. Авдейко. Работа выполнена в рамках проекта PIRE (Partners in International Research and Education: Student Contributions to the Collaborative Investigation of Bezymianny, Shiveluch and Karymsky Volcanoes, Kamchatka, Russia and Mount St. Helens, WA, USA).

Литература

- 1. Брайцева О.А., Литасова С.Н., Сулержицкий Л.Д., Егорова И.А., Грезды Э.И. Радиоуглеродное датирование и палинологическое изучение почвенно-пирокластического чехла подножий вулканов Карымский и Малый Семячик // Вулканология и Сейсмология. − 1989. №1. − с.19-36.
- 2. Брайцева О.А., Сулержицкий Л.Д. Голоценовый пирокластический покров, связанный с кальдерообразованием на вулкане Пра-Карымский // Вулканический центр: строение, динамика, вещество / Под ред. Ю.П. Масуренкова. Москва: Наука, 1980. с.235-243.
- 3. Селянгин О.Б. Эволюция кальдерного комплекса, ритмичность и направленность вулканического процесса в Карымской группе вулканов // Вулканизм и геодинамика / Под ред. Г.П. Авдейко, С.А. Федотова. Москва: Наука, 1977. с.187-201.

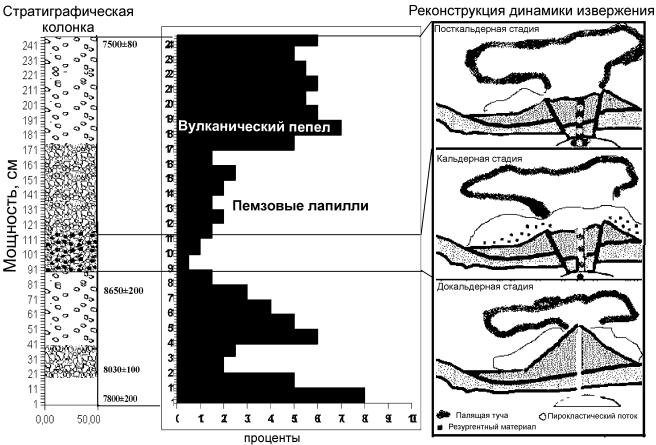


Рисунок. Реконструкция кальдерообразующего извержения вулкана Пра-Карымский. Радиоуглеродные даты по Брайцевой О.А. и др. [1].